You are here:-Injectable gel helps wounds heal faster

Injectable gel helps wounds heal faster

Researchers from the UCLA Henry Samueli School of Engineering and Applied Science have developed an injectable hydrogel that helps skin wounds heal more quickly, according to a news release. The material creates an instant scaffold that allows new tissue to latch on and grow within the cavities formed between linked spheres of gel.

The research was published June 1 on the website of the journal Nature Materials. The study was led by co-principal investigators Dino Di Carlo, PhD, professor of bioengineering, and Tatiana Segura, PhD, associate professor of chemical and biomolecular engineering; and co-lead authors Donald Griffin, PhD, and Westbrook Weaver, PhD, both postdoctoral scholars.

Healthcare professionals treating skin wounds try to keep the area moist because dry wounds heal much more slowly than wet ones. To accomplish this, they often use topically applied hydrogel dressings or films to seal over the wound or they use ointments to fill in the wound, according to the release. However, these materials do not provide an optimal scaffold to allow new tissue to grow as they degrade, so the new tissue growth can be relatively slow and fragile.

“Achieving a biomaterial that promotes rapid regeneration while maintaining structural support has been a holy grail in the field of tissue engineering,” Di Carlo said in the release. “Our team has achieved this in an injectable form by combining tailored material chemistry and microfluidic fabrication of uniform spherical building blocks, each about the width of a human hair.”

“Our technology is beautifully simple, as it utilizes any available chemistry to generate tiny gels that can be assembled into a large unit, leaving behind a path for cellular infiltration,” Segura said in the release.

The result is a packed cluster of microscopic synthetic polymer spheres attached at their surfaces, something like a jar of gumballs that are stuck together. The cluster creates a scaffold of microporous annealed particles, or a MAP gel, that fills in the wound. New tissue grows into the voids between the microspheres, and as the spheres degrade into the body, a matrix of newly grown tissue is left where the wound once was. New tissue continues growing until the wound is completely healed.

“The beauty of the MAP gel is that there are no other added growth factors that other technologies require to attract cells into the material,” Weaver said in the release. “The geometry of the MAP gel networks entices cells to migrate into the gel without the need for anything other than a cell adhesive peptide, so that the cells can grab onto the gels.”

The researchers demonstrated the MAP gel can promote the growth of new cells and formation of networks of connected cells at previously unseen rates. During in vivo tests, the researchers observed significant tissue regeneration in the first 48 hours, with much more healing during five days compared with materials in use today.

“We envision this material being useful for a wide range of wound applications, from acute damage, like lacerations and surgical wound closures, to more chronic applications like diabetic ulcers and large-area burn wounds,” Griffin said in the release. He added the hydrogel scaffolds could be useful in trauma situations, such as battlefields or EDs.

Philip Scumpia, MD, a clinical instructor of dermatology and dermatopathology at the David Geffen School of Medicine at UCLA, also was a study co-author. The research was supported by the National Institutes of Health.

To comment, email [email protected]

By | 2015-07-21T15:44:00-04:00 July 15th, 2015|Categories: Uncategorized|6 Comments

About the Author:

Sallie Jimenez
Sallie Jimenez is content manager for healthcare for from Relias. She develops and edits content for the blog, which covers industry news and trends in the nursing profession and healthcare. She also develops content for the Digital Editions. She has more than 25 years of healthcare journalism, content marketing and editing experience.


  1. Avatar
    mary July 23, 2015 at 5:26 pm - Reply

    Is there a sample for this

    • July 24, 2015 at 6:32 pm - Reply

      The NIH sponsored this study, please reach out to them to inquire about a sample at 301-496-4000.

    • Avatar
      Joe Cornett December 24, 2015 at 10:00 pm - Reply

      When will it be commercially/RX available?

  2. Avatar
    Carolyn Wolfe August 17, 2015 at 2:26 am - Reply

    My Dad is really battling diabetic ulcers right now. My family is in the Midwest, not as many resources available nearby. I’m going to call that phone number to see about getting a sample for his wound Dr. They’ve tried the various applications listed, but we’re almost into the third month with his wounds. If anyone has suggestions, please email me!

  3. Avatar
    Lori October 4, 2015 at 10:18 pm - Reply

    Would this be able to be used on neonates?

  4. Avatar
    Jennifer October 18, 2015 at 2:29 pm - Reply

    Curious if this would be used in GI tract?

Leave A Comment